
2025/11/21 04:02 1/6 Anschlüsse

Anschlüsse

Lage

Externe Anschlüsse

X1: CAN

Wenn der CAN-Teil der Platine bestückt wurde kann hier der CAN-Bus angeschlossen werden. Mit Jumper SV9 kann mit einer Steckbrücke der Busabschluss (120 Ω) aktiviert werden

X2: EMS

Hier wird der EMS-Bus der Heizung angeschlossen. Die Polung ist hier Unwichtig.

X3: USB

Über den USB-Anschlüsse kann direkt auf den EMS-Bus geschrieben und gelesen werden. Außerdem kann durch aktivierung des Bootloaders eine neue Firmware eingespielt werden.

X4: DC

Am Stromanschluss wird im Normalfall ein externes Netzteil 9V= 400mA angeschlossen. Durch einen Umbau kann hier auch direkt die geregelte +5V Stromversorgung angeschlossen werden.

SV6: Erweiterung

Durch Aufstecken einer Erweiterungsplatine können die Anschlüsse im Wandgehäuse nach außen geführt werden. Die Erweiterungsplatine muss dazu eine Verbindung zu SV7 haben. Der Pin 1 kann auch fest auf GND gelegt werden. Dazu muss der Lötjumper J7 zugelötet werden.

Interne Anschlüsse

Bei Bedarf kann eine Stift- oder Buchsenleisten eingelötet werden um Huckepack eine Erweiterungsplatine aufzustecken oder weitere Hardware anzuschließen. Bei Platzmangel im Gehäuse können die Kabel auch direkt angelötet werden.

SV1: PortA

@#dddddd: Pin	@#dddddd: Signal	@#dddddd: Beschreibung
@#eeeee: 1	RA0	
@#eeeee: 2	RA1	
@#eeeee: 3	RA2	
@#eeeee: 4	RA3	
@#eeeee: 5	RA4	
@#eeeee: 6	RA5	
@#eeeee: 7	GND	0V
@#eeeee: 8	VCC	+5V

2025/11/21 04:02 3/6 Anschlüsse

SV2: PortB

@#dddddd: Pin	@#dddddd: Signal	@#dddddd: Beschreibung
@#eeeee: 1	RB0	
@#eeeee: 2	RB1	
@#eeeee: 3	RB2	
@#eeeee: 4	RB3	
@#eeeee: 5	RB4	
@#eeeee: 6	RB5	
@#eeeee: 7	RB6	
@#eeeee: 8	RB7	
@#eeeee: 9	GND	0V
@#eeeee: 10	VCC	+5V

SV3: PortC

@#dddddd: Pin	@#dddddd:Signal	@#dddddd:Beschreibung
@#eeeee: 1	RC0	
@#eeeee: 2	RC1	
@#eeeee: 3	RC2	
@#eeeee: 4	RC3	
@#eeeee: 5	RC4	
@#eeeee: 6	RC5	
@#eeeee: 7	RC6	
@#eeeee: 8	RC7	
@#eeeee: 9	GND	0V
@#eeeee: 10	VCC	+5V

SV4: LCD, PortD, PortE

@#dddddd: Pin	@#dddddd: Signal	@#dddddd: Beschreibung
@#eeeee: 1	GND	0V <mark>V2.0: +5V</mark>
@#eeeee: 2	VCC	+5V V2.0: 0V
@#eeeee: 3	Poti	LCD Kontrast
@#eeeee: 4	RC0	
@#eeeee: 5	RC1	
@#eeeee: 6	RC2	
@#eeeee: 7	RD0	Data0
@#eeeee: 8	RD1	Data1
@#eeeee: 9	RD2	Data2
@#eeeee: 10	RD3	Data3
@#eeeee: 11	RD4	Data4
@#eeeee: 12	RD5	Data5
@#eeeee: 13	RD6	Data6
@#eeeee: 14	RD7	Data7
@#eeeee: 15	+5V	LED+
@#eeeee: 16	100Ω Pull Down	LED-

SV5: ISCP

@#dddddd: Pin	@#dddddd:Signal	@#dddddd:Beschreibung
@#eeeeee: 1	/MCLR	RE3 vom PIC
@#eeeee: 2	/MCLR'	RE3 zur Schaltung
@#eeeeee: 3	VCC	+5V
@#eeeeee: 4	_	_
@#eeeee: 5	GND	0V
@#eeeee: 6	_	_
@#eeeee: 7	PGD	RB7 vom Pic
@#eeeee: 8	PGD'	RB7' zur Schaltung
@#eeeeee: 9	PGC	RB6 vom Pic
@#eeeeee: 10	PGC'	RB6' zur Schaltung
@#eeeee: 11	PGM	RB5 vom Pic
@#eeeee: 12	PGM'	RB5' zur Schaltung

SV6: Externe Verbindung

1:1 durchgeschaltet zu SV7 Mit schließen von Jumper J7 kann Pin1 auf 0V gelegt werden

SV7: Interne Verbindung

1:1 durchgeschaltet zu SV6 Mit schließen von Jumper J7 kann Pin1 auf 0V gelegt werden

SV8: Externe LEDs

Dieser Anschluß liegt parallel zu den aufgelöteten LEDs. Hier können externe LEDs angeschlossen werden. Wenn dort LEDs mit niedriger Durchlasspannung angeschlossen werden wird die aufgelötete LED automatisch "abgeschaltet". Bei gleicher oder höherer Durchlasspannung sollte die interne LED ausgelötet werden.

SV9: CAN Busabschluss

Steckbrücke gesteckt = 120Ω Busabschluss aktiviert

SV10: Ethernet ENC28J60

SV11: SD/MMC-Karte

Diese Lötjumper sollten nur zusammen mit entsprechender Hardwareänderungen erfolgen. Bei falscher Handhabung

J1

Mit Jumper J1 und J4 bis J6 kann die Galvanische Trennung zwischen EMS-Bus und EMS-Gateway verhindert werden. Dazu müssen IC5 (ADUM1201) und IC5 (78L05) ausgelötet werden und diese Jumper geschlossen werden. J1 ist die 0V-Verbindung zum EMS-Bus

J2

Hiermit kann die Galvanische Trennung vom CAN-Bus verhindert werden. Hier dann J2,J3 und die Lötbrücker unter DC Wandler DC1 gemeinsam schleißen oder öffnen. IC3 (ADUM1201) und DC1 (DC-Wandler 5V) müssen dann ausgelötet werden. J2 ist die Senderichtung zum CAN-Bus

J3

Hiermit kann die Galvanische Trennung vom CAN-Bus verhindert werden. Hier dann J2,J3 und die Lötbrücker unter DC Wandler DC1 gemeinsam schleißen oder öffnen. IC3 (ADUM1201) und DC1 (DC-Wandler 5V) müssen dann ausgelötet werden. J2 ist die Empfangsichtung vom CAN-Bus

J4

Mit Jumper J1 und J4 bis J6 kann die Galvanische Trennung zwischen EMS-Bus und EMS-Gateway verhindert werden. Dazu müssen IC5 (ADUM1201) und IC5 (78L05) ausgelötet werden und diese Jumper geschlossen werden. J4 ist die Senderichtung zum EMS-Bus

J5

Mit Jumper J1 und J4 bis J6 kann die Galvanische Trennung zwischen EMS-Bus und EMS-Gateway verhindert werden. Dazu müssen IC5 (ADUM1201) und IC5 (78L05) ausgelötet werden und diese Jumper geschlossen werden. J5 ist die Empfangsrichtung vom EMS-Bus zum Gateway.

J6

Mit Jumper J1 und J4 bis J6 kann die Galvanische Trennung zwischen EMS-Bus und EMS-Gateway verhindert werden. Dazu müssen IC5 (ADUM1201) und IC5 (78L05) ausgelötet werden und diese Jumper geschlossen werden. J6 ist die +5V-Verbindung zum EMS-Bus.

J7

Mit diesem Lötjumper kann Pin1 von SV6 und SV7 auf 0V gezogen werden.

J8-J11

Diese Lötbrücken befinden sich auf der Unterseite neben dem ISCP-Stecker. Diese Lötjumper müssen offen sein um die erste Firmware mit Bootloader über ein ISCP-Programmiergerät zu brennen. Danach diese Lötjumper schließen um über den Bootloader neue Firmware einzuspielen oder den Gateway in Betrieb zu nehmen.

J12-J13

Wenn eine richtig gepolte Gleichspannung an der DC-Buchse eingespeist wird kann der Gleichrichter B1 ausgelötet werden. Hier kann die Verbindung zwischen DC-Buchse und Schaltung wieder hergestellt werden. Dazu beide Lötjumper schließen.

J14

Wenn eine geregelte richtig gepolte Gleichspannung von +5V eingespeist wird kann zusätzlich zu Gleichrichter B1 auch noch der Spannungsregler 78L05/LD1117 ausgelötet werden. Mit diesem Jumper wird die Verbindung zwischen Eingangsgleichspannung und Schaltung wiederhergestellt.

From:

http://emswiki.thefischer.net/ -

Permanent link:

http://emswiki.thefischer.net/doku.php?id=wiki:ems:connection&rev=1379877431

Last update: 2015/12/30 21:00

