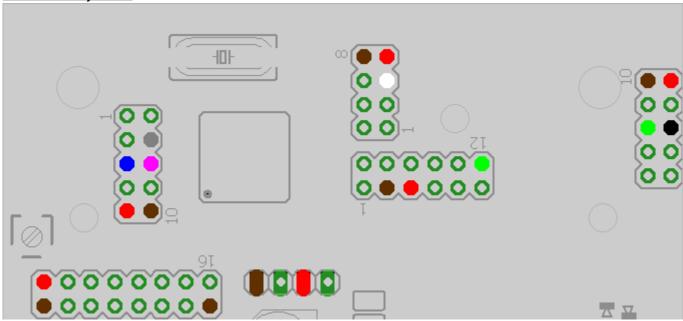

Bei der ersten Platine muss ie nach Größe der Firmware der PIC18F4580 durch einen PIC18F4685

Lift Dath AGES Elle Sei Gaftet Was dese Ethernet-Modul anzuschließen. Es sind Anschlüsse an Port A,B und C nötig. Diese können einfach hergestellt werden, indem auf eine Lochrasterplatine die entsprechenden Buchsenleisten aufgelötet werden und die Platine dann auf das EMS-GW aufgesteckt wird. Auf diese Platine können auch nötige Spannungsregler oder andere Anschlüsse gelötet werden. Das rote Kahel versorgt den Spannungsregler der unstabillisierten Der Spannungsregler der ersten Platine kahn nur 100mA liefern. Die Zweite Platine kahn schon mehr. Wenn werden den das Vare allgeschlössen wird reicht das eventuell nicht mehr aus.

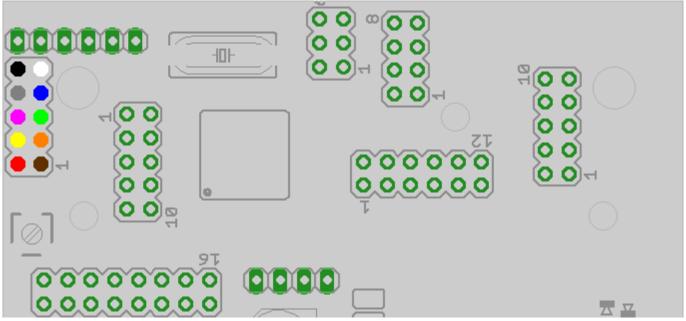


Das empfohlene Modul hat den Spannungswandler und die Pegelwandler bereits On-Board. Für andere Module gilt: Module mit 3,3 Volt benötigen noch zusätzlich einen 3,3V-Spannungsregler (200 mA!). Auch der 3,3 V ENC28J60 verträgt an den Eingängen 5V, so dass kein Pegelwandler benötigt wird. Es müssen SPI, CS und RES angeschlossen werden. Der genutzte TCP/IP Stack unterstützt die INT Leitung nicht, so dass der Port B5 ggf. für andere Zwecke genommen werden kann.

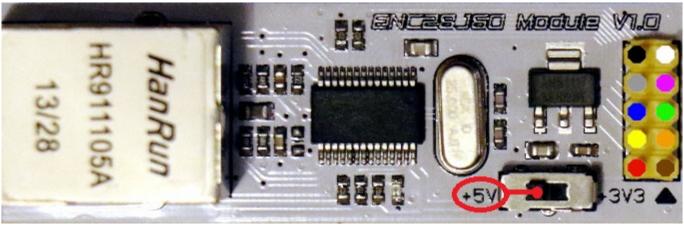


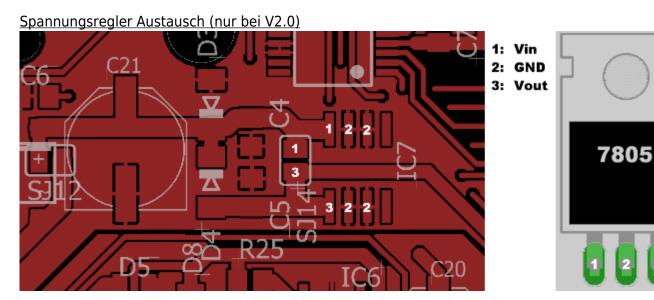

# Die folgende Farbtabelle für die Verkabelung gilt nur für Ethernet-Module die 5V unterstützen!!!

Wenn das Modul nur eine Betriebsspannung (Vin) von 3,3Volt benötigt muss zwischen Ethernet und Platine ein 3,3V-


### Signale:

| @#dddddd: <b>Farbe</b> | @#dddddd: <b>PCB</b> | @#dddddd: <b>Eth.</b> |
|------------------------|----------------------|-----------------------|
| @#603000: <b>1</b>     | +5V                  | Vin                   |
| @#ff0000: <b>2</b>     | GND                  | GND                   |
| @#ff8000: <b>3</b>     | N.C.                 | N.C.                  |
| @#ffff00: <b>4</b>     | N.C.                 | CLK                   |
| @#00ff00: <b>5</b>     | RB5                  | INT                   |
| @#0000ff: <b>6</b>     | RC5                  | SO                    |
| @#ff00ff: <b>7</b>     | RC4                  | SI                    |
| @#808080: <b>8</b>     | RC3                  | SCK                   |
| @#fffff: <b>9</b>      | RA4                  | CS                    |
| @#000000: <b>10</b>    | RB4                  | RST                   |


## Ems-Gateway V2.0:




# Ems-Gateway V2.1:



#### Elek-Freaks Ethernet (auf 5V umschalten!):





# **SD-Karte Nachrüstung:**

Das empfohlene Modul hat den Spannungswandler und die Pegelwandler bereits On-Board. Für andere Module gilt: Die SD-Karten benötigen 3,3V Betriebsspannung. Teilweise haben die käuflichen Module bereits einen Spannungsregler. Ansonsten ist ein 3,3V Regler nötig. Im Gegensatz zum ENC28J60 ist aber zwingend ein Pegelwandler nötig. Dabei sollte ein aktiver Wandler genommen werden, die Variante mit Spannungsteiler verursacht Probleme mit höheren Takten. Positiv getestet wurde die Variante mit N-MOS Transistoren.

... Die Anschlussskizze folgt noch ...

#### **USB-Umbau:**

Um den USB-Chip über das USB-Kabel unabhängig von der Platine zu versorgen muss die erste Version umgebaut werden. Bei der zweiten Version wird der USB-Chip schon über das USB-Kabel versorgt.

... Die Anleitung folgt noch ...

2025/11/21 01:39 5/5 Umbau des EMS-Gateway

## **Quarztausch:**

Das neue Gateway hat einen 10 MHz Quarz. Die Frequenz wird intern vervierfacht. Damit läuft der PIC mit 40 MHz. Ist der Quarz und der PIC getauscht, kann die neue Firmware geflashed werden.

From:

https://emswiki.thefischer.net/ -

Permanent link:

×

https://emswiki.thefischer.net/doku.php?id=wiki:ems:emsgwumbau&rev=1459721403

Last update: 2016/04/04 00:10